Dumont's Statistic on Words

نویسنده

  • Mark Skandera
چکیده

We define Dumont’s statistic on the symmetric group Sn to be the function dmc: Sn → N which maps a permutation σ to the number of distinct nonzero letters in code(σ). Dumont showed that this statistic is Eulerian. Naturally extending Dumont’s statistic to the rearrangement classes of arbitrary words, we create a generalized statistic which is again Eulerian. As a consequence, we show that for each distributive lattice J(P ) which is a product of chains, there is a poset Q such that the f -vector of Q is the h-vector of J(P ). This strengthens for products of chains a result of Stanley concerning the flag h-vectors of Cohen-Macaulay complexes. We conjecture that the result holds for all finite distributive lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics on wreath products, perfect matchings, and signed words

We introduce a natural extension of Adin, Brenti, and Roichman’s major-index statistic nmaj on signed permutations (Adv. Appl. Math. 27, (2001), 210−244) to wreath products of a cyclic group with the symmetric group. We derive “insertion lemmas” which allow us to give simple bijective proofs that our extension has the same distribution as another statistic on wreath products introduced by Adin ...

متن کامل

Bayesian Methods for Frequent Terms in Text: Models of Contagion and the ∆ Statistic

Most statistical approaches to modeling text implicitly assume that informative words are rare. This assumption is usually appropriate for topical retrieval and classification tasks; however, in non-topical classification and soft-clustering problems where classes and latent variables relate to sentiment or author, informative words can be frequent. In this paper we present a comprehensive set ...

متن کامل

Longest alternating subsequences in pattern-restricted k-ary words

We study the generating functions for pattern-restricted k-ary words of length n corresponding to the longest alternating subsequence statistic in which the pattern is any one of the six permutations of length three.

متن کامل

Making Inferences about Parameters

One must know the sampling distribution of the estimator (the statistic used to estimate  I shall use   to stand for the statistic used to estimate  ) to make full use of the estimator. The sampling distribution of a statistic is the distribution that would be obtained if you repeatedly drew samples of a specified size from a specified population and computed   on each sample. In other wo...

متن کامل

A Generalized Major Index Statistic

Inspired by the k-inversion statistic for LLT polynomials, we define a k-inversion number and k-descent set for words. Using these, we define a new statistic on words, called the k-major index, that interpolates between the major index and inversion number. We give a bijective proof that the k-major index is equi-distributed with the major index, generalizing a classical result of Foata and red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2001